Option analysis in CBA and the project development cycle

NP Event on CBA in the Transport sector
dr Artur Rudnicki – JASPERS Warsaw
Brussels 30 September 2015
Contents

- Lessons learned from 2007-2013 financial perspective
- Common problems in the past programing periods
- Legislative and Regulatory framework
- Rationality and logic behind of option analysis
- Practical approach to option analysis
- Option analysis – DG Regio and JASPERS recommendations
Lessons learned from previous financial perspectives

- Selected investment options sometimes oversized,
- Selection process concentrated too much on technical parameters instead of transport solutions
- Needs of end users most often not addressed fully
Common problems in the previous programing periods

- Reversed sequence
 - Project started from preliminary or final design
 - Feasibility study prepared at Application stage
- Retrofitting the selected option into option analysis
- Concentration on dogmatic full options not analysing sub-options or combinations of options
- Lack of sub-options and short-listing
- Process of in depth analysis of current transport problems is omitted or neglected.
Regulation EU No. 207/2015, Annex III (CBA Methodology), point 2.1.4 (c) requires that:

1. CBA for a major project shall include results of feasibility studies with demand and option analysis.

2. Option analysis is performed to assess and compare different alternative options which are found generally feasible to meet the existing and future demand for the project and to find the best solution.

- Major steps
- Key aspects
Major steps:

- look at basic strategic options (i.e. type of infrastructure and location for the project) – usually based on qualitative methods (MCA),
- find specific solutions at the technological level – mostly uses quantitative methods (CBA)

Key aspects of option analysis process:

- ability to properly justify the solution chosen
- if options can meet the same project objectives (i.e. similar externalities, traffic demand, etc.), the least cost solution should be taken into account,
- if the output and externalities are different in different options, then a simplified CBA should be undertaken for selecting investment option.
Option analysis – common-sense

Why do we need an option analysis?

<table>
<thead>
<tr>
<th>To avoid</th>
<th>To achieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underperformance</td>
<td>Feasible optimal solution</td>
</tr>
<tr>
<td>Over-dimensioning / oversizing</td>
<td>Solution addressing all relevant transport needs.</td>
</tr>
<tr>
<td>Wasting of financial resources</td>
<td>Financing the best cost effective investment project</td>
</tr>
<tr>
<td>Consuming too big proportion of EU allocation</td>
<td>Socio-economic best value for money</td>
</tr>
<tr>
<td>Project failure</td>
<td></td>
</tr>
</tbody>
</table>
Option analysis – Practical approach (1)

Why do we need an option analysis?

- To refer to strategic plans and documents perspective
- To address project objectives and project goals
- To reach cost effectiveness
- To comply with EU and national regulatory considerations (legal, financial, environmental, institutional requirements,
- To achieve technical and financial long term sustainability
- To facilitate project success
Option analysis – Practical approach (2)

Option analysis analytical process – cycle

- What do strategic documents require from a project?
- What are current transport problems, real ones?
- What are real project goals and objectives (strategic and operational)? – Quantitative targets
- How can we achieve these goals and objectives?
- **Creation of options and sub-options (clouds of options / matrices of options)**
- **Preselection process** – *MCA to be used*
- A few selected options (normally 2-4 investment options) for further analysis – *CBA to be used*
Creation of options and preselection process

Aim: Come to preferred small set of main options (very probably feasible) for final detailed assessment

Process

- Creation of options and sub-options (clouds of options / matrices of options)
- Development and implementation of an assessment approach
 - Define set(s) of criteria for assessment
 - Define methods of assessment of criteria as a whole
 - No single approach fits all cases
- Short-list options/sub-options
Option analysis – Important to remember

Always consider in option identification and selection the following drivers:

- Cost of a potential option
- Expected demand that an option can „guarantee“
- Environment including climate change
Option analysis process cycle – recommended approach - rail

- **Step 0.** Specification of the needs towards railway infrastructure expressed in the strategies and plans regarding railway infrastructure.
- **Step 1.** Specification of the current status of a railway line (or another component of the railway infrastructure)
- **Step 2.** Analysis of expectations of future market participants (carriers)
- **Step 3.** Determination of the project operating objectives
- **Step 4.** Assessment of possibilities of improvement in the operating layer (capacity, speed)
- **Step 5.** Identification of options.
- **Step 6.** Initial analysis of all options and **pre-selection**.
- **Step 7.** Specification of options for further analyses (CBA)
Option analysis – Practical example from a country

FS for Zilina-Kosice – Slovakia - railway corridor

- Main objective - significantly reduce travel times in a cost-effective and affordable way
- Invariant requirements for train operations, station capacity and TSI fulfilment
- Main degree of freedom is corridor travel time
- Four main travel time concept options required for detailed CBA analysis
- Main sub-options based on different section routings to achieve target travel times
- Sub-options assessed with MCA for each corridor concept - cost is the dominant criterion
- 4 short-listed options assessed with CBA, environmental and detailed risk analysis
No single options analysis approach in FS can be prescribed

Strategic level – justify and pre-define where possible

- Choices on mode balance
- Range of expected scale/impact level of investment

Further identify/explore FS “degrees of freedom”

- Usually significant differences in costs and/or impacts
- Could be routing or capacity for different operational plans
- Explore sub-decisions separately where significant (e.g. new major station on line in all routing options)

Assessment should properly take into account

- Measureable cost-effectiveness + impacts on other objectives
- Qualitative and quantitative risks / feasibility constraints
Option analysis – recommendations

DG Regio and JASPERS recommendations for 2014 -2020

financial perspective

- The are no dogma on option analysis (technical parameters, speed options, etc.)
 - Example from railway sector
 - minimum line speed requirements

- More qualitative tools like MCA to be used for preselection process

- More quantitative tools like CBA for short list analysis to be used – as an important criteria for final option recommendation
Thank you for your attention

Artur Rudnicki
rudnicki@eib.org
www.jaspersnetwork.org
jaspersnetwork@eib.org
For info or further questions on the CBA forum meetings and the activities of the JASPERS Networking Platform, please contact:

Massimo Marra
JASPERS Networking and Competence Center
Senior Officer
ph: +352 4379 85007
m.marra@eib.org

www.jaspersnetwork.org
jaspersnetwork@eib.org